Follow Us

header ads
header ads

Viral Vectors and Plasmid DNA Manufacturing Market Size to Accrue US$ 1.3 Billion by 2027

 According to the report, the global Viral Vectors and Plasmid DNA Manufacturing Market Size is projected to reach US Dollar 1.3 Billion by 2027 and is projected to expand at a CAGR of ~14.08% over the forecast period of 2020 to 2027.

Viral Vectors and Plasmid DNA Manufacturing Market Size 2016 to 2027


Gene therapy is an experimental treatment that comprises incorporating genetic material inside a person’s cells to stop or fight a particular disease. Researchers are studying gene therapy for several diseases including hemophilia, cancer, Parkinson's disease, severe combined immuno-deficiencies, HIV, via numerous dissimilar methods. A gene can be carried to a cell with the help of a carrier known as a vector. Viruses are the most general kinds of vectors used in gene therapy. Since last few years, several non-viral and viral vectors have been standardized and enhanced.

Get the Sample Pages of Report for More Understanding@ https://www.precedenceresearch.com/sample/1012

At present, the much wide spread viral vectors utilized for gene therapies are those based on lentivirus, retrovirus, adenovirus, and AAV vectors. These correspondingly form 8%, 16%, 20%, and 8% of the clinical trials of active gene therapy. Likewise, plasmid DNA has appeared as the most frequently preferred vectors amid non-viral gene delivery tools. Further, it finds application in production and development of DNA vaccines and viral vectors. There is growing demand for practical manufacturing solutions for viral vectors that can be freely scaled and boosted. This is because gene and cell therapies possess latent to quickly advance via clinical trials to commercialization. With the help of ongoing efforts, several organizations are respectively executing and developing state-of-the-art solutions intended to scale-up for viral vector manufacturing and speed up process development.

Growth Factors

Viral vectors have become ideal choice for gene transfer due to their efficient gene delivery, high transfection efficiency and stable gene expression. Further, upsurge in registration of clinical trials on viral vector-mediated gene therapy is stimulating inclination for viral vectors in gene transfer. Growing pervasiveness of target disorders and diseases, the accessibility of funding for gene therapy development, current research into viral vector-based cell and gene therapies and efficacy of viral vectors in gene therapy delivery are together supporting the market growth. Unexploited latent in emergent markets is projected to provide worthwhile growth opportunities for participants in this market. Furthermore, groundbreaking development in the vaccinology is fuelling the demand of these vectors to greater extent. Great amount of clinical and preclinical studies assessing the prospective of vectors in these cutting-edge therapies have exhibited favorable results. As a result of this, several investors are attracted towards this area which is making plasmid and viral vector manufacturing market a vigorous sector of investment. Further, it is inspiring fortunate funding activities from both the public and private sectors.

Global Viral Vectors and Plasmid DNA Manufacturing Market 2020 to 2027

Regional Snapshots

About 68% of the total international active clinical studies for gene therapies are proceeding in North America despite of the fact that the first 3 gene therapy candidates (Oncorine®, Gendicine® andRexin-G®) were accepted in Asia Pacific. During coming years, Asia Pacific is anticipated to grow at the fastest pace viral vector manufacturing market. Spurring research activities to unveil innovative gene therapies in the unexploited markets of this region are projected to support this tremendous growth in near future.

Report Highlights

  • Presently, around two-thirds of the gene therapy research is dedicated to oncology. These different facts have backed the governance of cancer segment over other disease segments
  • Extensive progress made in gene and cell therapy research since the early 1970s and 1980s has accelerated the adoption rate of plasmids and viral vectors for their use in these modern therapies
  • Pharmaceutical and biopharmaceutical companies are expected to collect major share of the global vector market. This is because of the effective launch of viral vector gene therapies and a vigorous pipeline of such therapies that helps growth of pharmaceutical and biopharmaceutical companies during near future.
  • Presently, U.S. and Europe have seemed as vector manufacturing centers despite of the fact that the first 3 gene therapy candidates were granted in Asian countries

Key Players & Strategies

Several established organizations have been involved in the production of vectors since the inception of this domain. However, the growing demand for these programs has spurred the establishment of many start-ups as well. Examples include (indicative list, in alphabetical order) Batavia Biosciences, Brammer Bio, GenIBET Biopharmaceuticals, Immune Technology, Lentigen Technology, Luminous Biosciences, Oxford Genetics, SignaGen Laboratories, Vectalys and Virovek. It is also worth highlighting that over 50 academic institutes / non-profit organizations are currently involved in the production of vectors for use in gene therapies.

The demand for clinical grade and research vectors is much than commercial grade vectors and almost many gene therapy entrants are in development stage. Nevertheless, some companies have are rigorously manufacturing commercial scale capacity for vector production. Some of these players include BioReliance, Aldevron, Eurogentec, Cobra Biologics, Lonza, MassBiologics, FUJIFILM Diosynth Biotechnologies and WuXiAppTec amongst others.

Market Segmentation

By Vector Type

  • Adenovirus
  • Plasmid DNA
  • Lentivirus
  • Retrovirus
  • AAV
  • Others

By Application

  • Gene Therapy
  • Antisense &RNAi
  • Cell Therapy
  • Vaccinology

By Workflow

  • Upstream Processing
  • Downstream Processing

By End-User

  • Biopharmaceutical and Pharmaceutical Companies
  • Research Institutes

By Disease

  • Genetic Disorders
  • Cancer
  • Infectious Diseases
  • Others

By Geography

  • North America
  • Europe
  • Asia Pacific
  • Rest of the World
TABLE OF CONTENT

Chapter 1. Introduction

1.1. Research Objective
1.2. Scope of the Study
1.3. Definition

Chapter 2. Research Methodology

2.1. Research Approach
2.2. Data Sources
2.3. Assumptions & Limitations

Chapter 3. Executive Summary

3.1. Market Snapshot

Chapter 4. Market Variables and Scope

4.1. Introduction
4.2. Market Classification and Scope
4.3. Industry Value Chain Analysis
4.3.1. Raw Material Procurement Analysis
4.3.2. Sales and Distribution Channel Analysis
4.3.3. Downstream Buyer Analysis

Chapter 5. Market Dynamics Analysis and Trends

5.1. Market Dynamics
5.1.1. Market Drivers
5.1.2. Market Restraints
5.1.3. Market Opportunities
5.2. Porter’s Five Forces Analysis
5.2.1. Bargaining power of suppliers
5.2.2. Bargaining power of buyers
5.2.3. Threat of substitute
5.2.4. Threat of new entrants
5.2.5. Degree of competition

Chapter 6. Competitive Landscape

6.1.1. Company Market Share/Positioning Analysis
6.1.2. Key Strategies Adopted by Players
6.1.3. Vendor Landscape
6.1.3.1. List of Suppliers
6.1.3.2. List of Buyers

Chapter 7. Global Viral Vectors & Plasmid DNA Manufacturing Market, By Vector Type

7.1. Viral Vectors & Plasmid DNA Manufacturing Market, by Vector Type, 2020-2027
7.1.1. Adenovirus
7.1.1.1. Market Revenue and Forecast (2016-2027)
7.1.2. Plasmid DNA
7.1.2.1. Market Revenue and Forecast (2016-2027)
7.1.3. Lentivirus
7.1.3.1. Market Revenue and Forecast (2016-2027)
7.1.4. Retrovirus
7.1.4.1. Market Revenue and Forecast (2016-2027)
7.1.5. AAV
7.1.5.1. Market Revenue and Forecast (2016-2027)
7.1.6. Others
7.1.6.1. Market Revenue and Forecast (2016-2027)

Chapter 8. Global Viral Vectors & Plasmid DNA Manufacturing Market, By Application Type

8.1. Viral Vectors & Plasmid DNA Manufacturing Market, by Application Type, 2020-2027
8.1.1. Gene Therapy
8.1.1.1. Market Revenue and Forecast (2016-2027)
8.1.2. Antisense &RNAi
8.1.2.1. Market Revenue and Forecast (2016-2027)
8.1.3. Cell Therapy
8.1.3.1. Market Revenue and Forecast (2016-2027)
8.1.4. Vaccinology
8.1.4.1. Market Revenue and Forecast (2016-2027)

Chapter 9. Global Viral Vectors & Plasmid DNA Manufacturing Market, By Workflow Type

9.1. Viral Vectors & Plasmid DNA Manufacturing Market, by Workflow Type, 2020-2027
9.1.1. Upstream Processing (Vector Recovery/Harvesting, Vector Amplification & Expansion)
9.1.1.1. Market Revenue and Forecast (2016-2027)
9.1.2. Downstream Processing (Fill-finish, Purification)
9.1.2.1. Market Revenue and Forecast (2016-2027)

Chapter 10. Global Viral Vectors & Plasmid DNA Manufacturing Market, By End-User Type

10.1. Viral Vectors & Plasmid DNA Manufacturing Market, by End-User Type, 2020-2027
10.1.1. Biopharmaceutical and Pharmaceutical Companies
10.1.1.1. Market Revenue and Forecast (2016-2027)
10.1.2. Research Institutes
10.1.2.1. Market Revenue and Forecast (2016-2027)

Chapter 11. Global Viral Vectors & Plasmid DNA Manufacturing Market, By Disease

11.1. Viral Vectors & Plasmid DNA Manufacturing Market, by Disease, 2020-2027
11.1.1. Genetic Disorders
11.1.1.1. Market Revenue and Forecast (2016-2027)
11.1.2. Cancer
11.1.2.1. Market Revenue and Forecast (2016-2027)
11.1.3. Infectious Diseases
11.1.3.1. Market Revenue and Forecast (2016-2027)
11.1.4. Others
11.1.4.1. Market Revenue and Forecast (2016-2027)

Chapter 12. Global Viral Vectors & Plasmid DNA Manufacturing Market, Regional Estimates and Trend Forecast

12.1. North America
12.1.1. Market Revenue and Forecast, by Vector (2016-2027)
12.1.2. Market Revenue and Forecast, by Application (2016-2027)
12.1.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.1.4. Market Revenue and Forecast, by End-User (2016-2027)
12.1.5. Market Revenue and Forecast, by Disease (2016-2027)
12.1.6. U.S.
12.1.6.1. Market Revenue and Forecast, by Vector (2016-2027)
12.1.6.2. Market Revenue and Forecast, by Application (2016-2027)
12.1.6.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.1.6.4. Market Revenue and Forecast, by End-User (2016-2027)
12.1.7. Market Revenue and Forecast, by Disease (2016-2027)
12.1.8. Rest of North America
12.1.8.1. Market Revenue and Forecast, by Vector (2016-2027)
12.1.8.2. Market Revenue and Forecast, by Application (2016-2027)
12.1.8.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.1.8.4. Market Revenue and Forecast, by End-User (2016-2027)
12.1.9. Market Revenue and Forecast, by Disease (2016-2027)
12.2. Europe
12.2.1. Market Revenue and Forecast, by Vector (2016-2027)
12.2.2. Market Revenue and Forecast, by Application (2016-2027)
12.2.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.2.4. Market Revenue and Forecast, by End-User (2016-2027)
12.2.5. Market Revenue and Forecast, by Disease (2016-2027)
12.2.6. UK
12.2.6.1. Market Revenue and Forecast, by Vector (2016-2027)
12.2.6.2. Market Revenue and Forecast, by Application (2016-2027)
12.2.6.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.2.7. Market Revenue and Forecast, by End-User (2016-2027)
12.2.8. Market Revenue and Forecast, by Disease (2016-2027)
12.2.8.1. Market Revenue and Forecast, by Raw Material (2016-2027)
12.2.9. Germany
12.2.9.1. Market Revenue and Forecast, by Vector (2016-2027)
12.2.9.2. Market Revenue and Forecast, by Application (2016-2027)
12.2.9.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.2.10. Market Revenue and Forecast, by End-User (2016-2027)
12.2.11. Market Revenue and Forecast, by Disease (2016-2027)
12.2.12. France
12.2.12.1. Market Revenue and Forecast, by Vector (2016-2027)
12.2.12.2. Market Revenue and Forecast, by Application (2016-2027)
12.2.12.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.2.12.4. Market Revenue and Forecast, by End-User (2016-2027)
12.2.13. Market Revenue and Forecast, by Disease (2016-2027)
12.2.14. Rest of Europe
12.2.14.1. Market Revenue and Forecast, by Vector (2016-2027)
12.2.14.2. Market Revenue and Forecast, by Application (2016-2027)
12.2.14.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.2.14.4. Market Revenue and Forecast, by End-User (2016-2027)
12.2.15. Market Revenue and Forecast, by Disease (2016-2027)
12.3. APAC
12.3.1. Market Revenue and Forecast, by Vector (2016-2027)
12.3.2. Market Revenue and Forecast, by Application (2016-2027)
12.3.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.3.4. Market Revenue and Forecast, by End-User (2016-2027)
12.3.5. Market Revenue and Forecast, by Disease (2016-2027)
12.3.6. India
12.3.6.1. Market Revenue and Forecast, by Vector (2016-2027)
12.3.6.2. Market Revenue and Forecast, by Application (2016-2027)
12.3.6.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.3.6.4. Market Revenue and Forecast, by End-User (2016-2027)
12.3.7. Market Revenue and Forecast, by Disease (2016-2027)
12.3.8. China
12.3.8.1. Market Revenue and Forecast, by Vector (2016-2027)
12.3.8.2. Market Revenue and Forecast, by Application (2016-2027)
12.3.8.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.3.8.4. Market Revenue and Forecast, by End-User (2016-2027)
12.3.9. Market Revenue and Forecast, by Disease (2016-2027)
12.3.10. Japan
12.3.10.1. Market Revenue and Forecast, by Vector (2016-2027)
12.3.10.2. Market Revenue and Forecast, by Application (2016-2027)
12.3.10.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.3.10.4. Market Revenue and Forecast, by End-User (2016-2027)
12.3.10.5. Market Revenue and Forecast, by Disease (2016-2027)
12.3.11. Rest of APAC
12.3.11.1. Market Revenue and Forecast, by Vector (2016-2027)
12.3.11.2. Market Revenue and Forecast, by Application (2016-2027)
12.3.11.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.3.11.4. Market Revenue and Forecast, by End-User (2016-2027)
12.3.11.5. Market Revenue and Forecast, by Disease (2016-2027)
12.4. MEA
12.4.1. Market Revenue and Forecast, by Vector (2016-2027)
12.4.2. Market Revenue and Forecast, by Application (2016-2027)
12.4.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.4.4. Market Revenue and Forecast, by End-User (2016-2027)
12.4.5. Market Revenue and Forecast, by Disease (2016-2027)
12.4.6. GCC
12.4.6.1. Market Revenue and Forecast, by Vector (2016-2027)
12.4.6.2. Market Revenue and Forecast, by Application (2016-2027)
12.4.6.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.4.6.4. Market Revenue and Forecast, by End-User (2016-2027)
12.4.7. Market Revenue and Forecast, by Disease (2016-2027)
12.4.8. North Africa
12.4.8.1. Market Revenue and Forecast, by Vector (2016-2027)
12.4.8.2. Market Revenue and Forecast, by Application (2016-2027)
12.4.8.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.4.8.4. Market Revenue and Forecast, by End-User (2016-2027)
12.4.9. Market Revenue and Forecast, by Disease (2016-2027)
12.4.10. South Africa
12.4.10.1. Market Revenue and Forecast, by Vector (2016-2027)
12.4.10.2. Market Revenue and Forecast, by Application (2016-2027)
12.4.10.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.4.10.4. Market Revenue and Forecast, by End-User (2016-2027)
12.4.10.5. Market Revenue and Forecast, by Disease (2016-2027)
12.4.11. Rest of MEA
12.4.11.1. Market Revenue and Forecast, by Vector (2016-2027)
12.4.11.2. Market Revenue and Forecast, by Application (2016-2027)
12.4.11.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.4.11.4. Market Revenue and Forecast, by End-User (2016-2027)
12.4.11.5. Market Revenue and Forecast, by Disease (2016-2027)
12.5. Latin America
12.5.1. Market Revenue and Forecast, by Vector (2016-2027)
12.5.2. Market Revenue and Forecast, by Application (2016-2027)
12.5.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.5.4. Market Revenue and Forecast, by End-User (2016-2027)
12.5.5. Market Revenue and Forecast, by Disease (2016-2027)
12.5.6. Brazil
12.5.6.1. Market Revenue and Forecast, by Vector (2016-2027)
12.5.6.2. Market Revenue and Forecast, by Application (2016-2027)
12.5.6.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.5.6.4. Market Revenue and Forecast, by End-User (2016-2027)
12.5.7. Market Revenue and Forecast, by Disease (2016-2027)
12.5.8. Rest of LATAM
12.5.8.1. Market Revenue and Forecast, by Vector (2016-2027)
12.5.8.2. Market Revenue and Forecast, by Application (2016-2027)
12.5.8.3. Market Revenue and Forecast, by Workflow (2016-2027)
12.5.8.4. Market Revenue and Forecast, by End-User (2016-2027)
12.5.8.5. Market Revenue and Forecast, by Disease (2016-2027)

Chapter 13. Company Profiles

13.1. Novasep
13.1.1. Company Overview
13.1.2. Product Offerings
13.1.3. Financial Performance
13.1.4. Recent Initiatives
13.2. Aldevron
13.2.1. Company Overview
13.2.2. Product Offerings
13.2.3. Financial Performance
13.2.4. Recent Initiatives
13.3. Merck Waisman Biomanufacturing
13.3.1. Company Overview
13.3.2. Product Offerings
13.3.3. Financial Performance
13.3.4. Recent Initiatives
13.4. Creative Biogene
13.4.1. Company Overview
13.4.2. Product Offerings
13.4.3. Financial Performance
13.4.4. Recent Initiatives
13.5. The Cell and Gene Therapy Catapult
13.5.1. Company Overview
13.5.2. Product Offerings
13.5.3. Financial Performance
13.5.4. Recent Initiatives
13.6. Cobra Biologics
13.6.1. Company Overview
13.6.2. Product Offerings
13.6.3. Financial Performance
13.6.4. Recent Initiatives
13.7. uniQure N.V.
13.7.1. Company Overview
13.7.2. Product Offerings
13.7.3. Financial Performance
13.7.4. Recent Initiatives
13.8. Addgene
13.8.1. Company Overview
13.8.2. Product Offerings
13.8.3. Financial Performance
13.8.4. Recent Initiatives
13.9. FUJIFILM Holdings Corporation
13.9.1. Company Overview
13.9.2. Product Offerings
13.9.3. Financial Performance
13.9.4. Recent Initiatives
13.10. Oxford Biomedicaplc
13.10.1. Company Overview
13.10.2. Product Offerings
13.10.3. Financial Performance
13.10.4. Recent Initiatives
13.11. Takara Bio Inc.
13.11.1. Company Overview
13.11.2. Product Offerings
13.11.3. Financial Performance
13.11.4. Recent Initiatives

Chapter 14. Research Methodology

14.1. Primary Research
14.2. Secondary Research
14.3. Assumptions

Chapter 15. Appendix

15.1. About Us
15.2. Glossary of Terms

Full Report is Ready | Buy this Premium Research Report@ https://www.precedenceresearch.com/checkout/1012

You can place an order or ask any questions, please feel free to contact at sales@precedenceresearch.com | +1 774 402 6168

About Us

Precedence Research is a worldwide market research and consulting organization. We give unmatched nature of offering to our customers present all around the globe across industry verticals. Precedence Research has expertise in giving deep-dive market insight along with market intelligence to our customers spread crosswise over various undertakings. We are obliged to serve our different client base present over the enterprises of medicinal services, healthcare, innovation, next-gen technologies, semi-conductors, chemicals, automotive, and aerospace & defense, among different ventures present globally.

Contact Us:

Precedence Research

Apt 1408 1785 Riverside Drive Ottawa, ON, K1G 3T7, Canada

Call: +1 774 402 6168

Email: sales@precedenceresearch.com

Blog: https://precedenceresearchnews.wordpress.com

Follow us on LinkedIn| Twitter| Facebook

Post a Comment

0 Comments